Systems analysis of the CO2 concentrating mechanism in cyanobacteria

نویسندگان

  • Niall M Mangan
  • Michael P Brenner
چکیده

Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Components of the CO2-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis

In cyanobacteria, the CO2-concentrating mechanism (CCM) is a vital biological process that provides effective photosynthetic CO2 fixation by elevating the CO2 level near the active site of Rubisco. This process enables the adaptation of cyanobacteria to various habitats, particularly in CO2-limited environments. Although CCM of freshwater and marine cyanobacteria are well studied, there is limi...

متن کامل

concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants

Cyanobacteria have evolved a significant environmental adaptation, known as a CO2-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO2 concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO23 , and CO2) within the cell where the Ci pool is utilized to provide elevated CO2 concentrations around th...

متن کامل

Sustained net CO2 evolution during photosynthesis by marine microorganism

BACKGROUND Many aquatic photosynthetic microorganisms possess an inorganic-carbon-concentrating mechanism that raises the CO2 concentration at the intracellular carboxylation sites, thus compensating for the relatively low affinity of the carboxylating enzyme for its substrate. In cyanobacteria, the concentrating mechanism involves the energy-dependent influx of inorganic carbon, the accumulati...

متن کامل

The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.

Cyanobacteria probably exhibit the widest range of diversity in growth habitats of all photosynthetic organisms. They are found in cold and hot, alkaline and acidic, marine, freshwater, saline, terrestrial, and symbiotic environments. In addition to this, they originated on earth at least 2.5 billion years ago and have evolved through periods of dramatic O2 increases, CO2 declines, and temperat...

متن کامل

Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation

BACKGROUND Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014